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Abstract—Energy-efficiency (EE) optimization of long-term evolution (LTE) networks dedicated to vehicle-to-vehicle communications
(LTE-V2V) is critical for connected vehicles. In this paper, we integrate perimeter control methodologies from transportation science
into EE optimization to make vehicular communications adaptive to temporal-spatial dynamics of macroscopic traffic flows in multiple
urban regions. Specifically, we develop a hierarchical framework of joint LTE-V2V EE optimization and perimeter traffic flow control. Its
goal is to minimize the total traffic network delay, defined as the integral of the vehicle accumulations in the urban regions over a
prediction horizon time, meanwhile maximizing the energy efficiency of the LTE-V2V communications in the same regions. We propose
a model predictive perimeter controller at a low level, using a macroscopic fundamental diagram (MFD) to capture the relationship
between the traffic density and the outflow of each urban region. We also propose a high-level EE optimization model and an iterative
algorithm, considering the multi-region coordinated traffic dynamics, to jointly optimize vehicular transmission power and beacon
frequency. Simulation results validate our proposed models and show that our method outperforms the latest solutions by improving at
least 9.57% EE of the multiple regions. Our method can also provide 27.69% improvement in resource utilization fairness, indicating a
fairer EE performance distribution among these regions.
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1 INTRODUCTION

R ESOURCE management plays a critical role in the de-
sign and deployment of various wireless communi-

cations and networks, such as long-term evolution (LTE)
networks that exploit device-to-device (D2D) features to
realize vehicle-to-vehicle communications (LTE-V2V). Its
fundamental goal is to optimize the achievable capacity and
transmission performance of a communication system con-
suming a unit of energy resource, i.e., energy-efficiency (EE)
optimization. LTE-V2V networks are considered a critical
enabling component of intelligent transportation systems
(ITS) in the future, promising a wide variety of vehicular
safety applications, such as real-time beaconing in vehic-
ular cooperative awareness [1]–[3]. However, the system-
level performance of large-scale LTE-V2V communications
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is usually limited due to constrained LTE resource blocks
(RBs) [4]. Recent studies [5]–[7] have demonstrated that
physical-layer communication interferences and collisions
may become more severe in road traffic scenarios with
higher vehicle density. Generally, when the total traffic accu-
mulation in an urban region increases, the average number
of LTE-V2V communication vehicles in the same region
rises, leading to the fact that the LTE RBs are insufficient
to support the connected vehicles in the reuse range [8],
[9]. The dynamical allocation of limited RBs among vehicles
located within the same resource reuse range of an LTE-V2V
communication network in an urban region, determining
the LTE-V2V communication performance, directly depends
on the vehicle density distribution and macroscopic traffic
flow dynamics in this region. At this point, the evolution of
the region-level traffic flow can significantly influence the
system-level performance of the LTE-V2V network.

Additionally, an urban road area can be partitioned into
several adjacent regions to facilitate real-time road traffic
management and control of the large-scale urban road traffic
network. It is recognized from considerable studies (such
as [10]–[14]) in transportation science that the temporal-
spatial dynamics of macro-level traffic flows in the adjacent
regions is highly coupled. Thus, the performance of the
LTE-V2V network in each region is inherently coupled with
that in other neighboring regions since each region’s vehicle
density relies on the internal traffic generation and the
flow transferring between the neighboring regions. From the
system-level perspective, optimizing multi-region LTE-V2V
networks requires understanding the relationship of multi-
region macroscopic traffic dynamics and how to adapt the
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resource allocation of the communication networks to the
macroscopic traffic dynamics.

Nevertheless, few current efforts (to the best of our
knowledge) have been made to incorporate multi-region
macroscopic traffic dynamics into an LTE-V2V network opti-
mization framework. While many resource allocation meth-
ods and application frameworks of cellular vehicular net-
works, such as [15]–[18], can provide high energy efficiency
in a low-density traffic region, their global optimization per-
formance regarding multiple neighboring regions may be
limited because their lack of coordinating inter-region trans-
fer flow dynamics produces an imbalanced temporal-spatial
distribution of multi-region vehicle densities. Most state-
of-the-art resource optimization methods in wireless com-
munication and networks focus on communication systems
but have not incorporated the impact of road traffic systems
on their communication systems and cannot provide multi-
disciplinary insight and design. The absence of integrating
road traffic control tools into communication optimization
and resource management for connected vehicles, yielding
poor communication performance in some congested urban
regions, limits the overall performance of communication
networks deployed in multiple regions.

Meanwhile, in the transportation community, advanced
perimeter control approaches like [19]–[21] have been pro-
posed to regulate the traffic flows (i.e., vehicle flows) trans-
ferring between neighboring urban regions. Recent perime-
ter control frameworks generally build on the principle of
macroscopic fundamental diagram (MFD) that is used to de-
scribe the aggregated road traffic dynamics and provides the
relationship between vehicle density and space-mean traffic
flow or output flow of an urban region at an aggregated
scale [22]–[25]. These studies show that the MFD provides
a powerful modeling tool to develop tractable dynamical
system models for multi-region road traffic dynamics and
to design region-level flow control schemes for coordinating
the traffic dynamics of these regions. Such traffic control
schemes with MFD motivate a potential progress towards
a new generation of joint management and optimization of
vehicular networks and urban road traffic flows. Neverthe-
less, it remains unexplored how to integrate multi-region
traffic dynamics under MFD-based perimeter control into
the EE optimization of multi-region vehicular networks.

In this paper, we propose a hierarchical joint optimiza-
tion framework for coordinating traffic flow dynamics of
multiple adjacent regions to alleviate traffic congestion or
unbalanced traffic distribution over the regions and for
improving the EE performance of the LTE-V2V networks in
the corresponding regions simultaneously. This framework
leads to a joint vehicular communication optimization and
macroscopic traffic control (VCOMTC) methodology. The
lower level of the framework proposes a nonlinear model
predictive controller (MPC) based on the multi-region MFDs
to realize optimal perimeter control, i.e., manipulating traffic
flows transferring between neighboring regions. We further
develop a vehicular EE communication optimization model
and an effective solving algorithm that incorporates the
multi-region traffic dynamics coordinated by the lower-
level MFD-based MPC model, thus enabling the adaptive
response of the multi-region LTE-V2V networks to the
temporal-spatial evolution of traffic flows in the regions.

With the above hierarchical framework, we provide a critical
insight into how multi-region LTE-V2V networks can benefit
from integrating traffic dynamics control and EE commu-
nication optimization, facilitating interdisciplinary research
from transportation and communication domains.

1.1 Literature Review

Recently, integrating advanced information communication
technologies, such as network function virtualization (NFV),
central and edge clouds, mobile edge computing (MEC),
and 5G network architecture, with vehicular communica-
tions has spawned new implementation architectures for
vehicular networks like 5G vehicular networks [15]. This ad-
vancement is believed to provide opportunities to transform
traditional vehicles and cities into smart ones. To practically
enable vehicle-to-everything (V2X) communications based
on current radio access technologies, many research efforts
develop different mobility management models and proto-
cols to improve seamlessness, reliability, and throughput
of the network systems such as Dedicated Short Range
Communications (DSRC), LTE, and 5G networks [16]. Rep-
resentative state-of-the-art mobility management schemes
include software-defined networks (SDN)-based, fog-based,
and heterogeneous networks-based methods [16]. However,
due to the limitation of radio resources, large-scale de-
ployment of vehicular networks will meet some significant
challenges, among which increasing wireless interference
and transmission collisions is an essential issue. Traditional
solutions to this issue are modifying existing medium ac-
cess control (MAC) protocols like carrier sense multiple
access with collision avoidance (CSMA/CA) protocols or
designing novel physical-layer congestion control schemes.
For example, many researchers from the communication
community have developed different congestion control
schemes, such as rate adaption- or power adaption-based
control approaches, joint power and rate optimization ap-
proaches, and non-orthogonal multiple access (NOMA)-
based methods [17]. As LTE-based and 5G New Radio (NR)-
based access technologies are two main streams of cellu-
lar V2X (C-V2X) networks, many recent sidelink resource
allocation frameworks aim to improve the performance
of dynamic scheduling and sensing-based semi-persistent
scheduling (SB-SPS) algorithms operated in LTE-V2X Mode
3 and Mode 4 and extend these scheduling algorithms to
the counterparts (i.e., Mode 1 and Mode 2) in 5G-V2X
networks [18]. These frameworks modify the legacy SB-SPS
procedure by combining other enhancement mechanisms,
such as variable-size packet design, reservation splitting,
long blind spot avoidance, and position- and mobility-aware
optimization, with the resource scheduling algorithms in
LTE-V2X or 5G-V2X networks [18].

The existing surveys [15]–[18] show that many resource
allocation schemes can provide better connectivity and re-
source utilization, while they also suggest that much space
remains to improve C-V2X networks. The underlying idea
is to enable resource allocation procedures to adapt to time-
varying environmental conditions (e.g., road traffic flows
and vehicle density). However, while region-level road
traffic dynamics characterizes varying vehicle density that
affects the resource utilization of either LTE-V2X or 5G-V2X
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networks, few existing resource scheduling schemes have
integrated macroscopic road traffic management and control
into their radio resource allocation. It is left to establish
the connection between the EE optimization of multi-region
vehicular networks and traffic dynamics.

Approaches based on convex approximation, mixed in-
teger programming, and learning-based optimization tech-
niques have been developed for maximizing network-wide
EE performance of vehicular networks [26]–[30]. Other
approaches to optimize the EE performance of vehicu-
lar networks follow a joint control framework of power
and beacon rate [31]–[40]. These approaches can be di-
vided into three main categories, including i) mathematical
optimization-based approaches that formulate the joint re-
source allocation problem as multi-stage optimization prob-
lems [31], [36], mixed boolean linear programming problems
[33] or mixed integer nonlinear programming problems [40],
ii) learning-based approaches such as Q-learning [32], feder-
ated learning [34], and Deep Deterministic Policy Gradient
(DDPG) schemes [37], and iii) game-theoretical approaches
such as [38], [41], [42]. In [35], the researchers analytically
derive packet reception probability (PRP) of resource al-
location algorithms for LTE-V2V networks, providing an
insight into the effect of application-layer and physical-
layer parameters on the network performance. As fairness is
another significant optimization objective in resource alloca-
tion, [43] provides a general model describing the tradeoff
between the optimal performance of a multi-user wireless
communication system and its achievable fairness in re-
source allocation. This theoretical model can pave the way
for designing optimal EE-fairness tradeoff schemes. In [44],
the researchers propose a power control approach based
on Channel Busy Ratio (CBR) measurement to enhance
the fairness of radio resource allocation among vehicles
broadcasting messages via the DSRC network. Additionally,
other researchers move towards improving fairness among
vehicles while optimizing radio resource usage via adaptive
clustering and cluster head selection [39].

The above literature shows that various optimization
schemes succeed in power control, rate adaptation, and joint
resource allocation of vehicular networks. However, these
existing studies mainly focus on communication modeling
and optimization of single-region vehicular networks, ne-
glecting the impact of multi-region road traffic flow dy-
namics on the communication system. Even though they
recognize that spatial vehicle density distribution signifi-
cantly influences the usage of radio resources in vehicular
networks, few studies allow for power and rate adaptation
on spatial-temporal varying vehicle density in multiple
neighboring road regions. Consequently, these existing op-
timization schemes may not provide optimal performance
when applied to multi-region vehicular networks with lim-
ited resource blocks.

1.2 Motivation and Contributions

According to the 3GPP standard specification [1]–[3], [45],
LTE-V2V networks exploit the single-carrier frequency-
division multiple-access (SC-FDMA) protocol for their phys-
ical layer and MAC layer. The number of resource blocks
in a signal frame is restricted and should be properly

scheduled in response to varying vehicle density. Some
analytical studies further show that vehicle density in the
access environment significantly influences the reliability of
LTE-V2V networks in Mode 3 [8]. Other studies [5], [6], [42]
indicate that road traffic flows can significantly affect the
data transmission rate of a vehicular network. However, to
our knowledge, no existing studies have joined macroscopic
traffic flow dynamics and MFD-based perimeter control into
EE optimization of LTE-V2V networks. Therefore, this paper
aims to fill the gap by developing a joint optimization frame-
work. Our framework integrates multi-region MFD-based
predictive perimeter traffic control and EE optimization of
multi-region LTE-V2V networks. We differentiate our work
from existing literature by enabling multi-region coordi-
nated traffic dynamics-driven power control and beaconing
rate adaptation for vehicular communications, providing
new insight into multi-disciplinary modeling and optimiza-
tion regarding communication and transportation.

We develop a hierarchical framework that jointly realizes
MFD-based perimeter traffic flow control and power and
beaconing rate optimization for LTE-V2V communications
in multiple regions. Specifically, we propose a model pre-
dictive perimeter control integrated at the low level of the
framework, which uses the MFDs of the multiple regions to
predictively regulate the temporal-spatial dynamics of dif-
ferent traffic flows, including the internal and transfer flows
in these regions. The low-level model predictive perimeter
control aims to minimize the multi-region traffic network
delays via dynamically controlling the transfer flows be-
tween adjacent regions. Moreover, we propose a communi-
cation optimization model at the high level, aiming to max-
imize the holistic EE performance of the multi-region LTE-
V2V communication networks via jointly optimizing vehic-
ular transmission power and broadcast beacon frequency.
The high-level EE optimization model integrates the low-
level MFD-based model predictive perimeter control and is
driven by the multi-region regulated traffic flow dynamics.
Thus, it adapts to the temporal-spatial evolution of vehicle
density distributions over multi-region traffic networks. Our
major contributions are summarized as follows.

(i) We theoretically derive the network connectivity in
LTE-V2V communications based on the standard specifica-
tion and further characterize the EE performance of LTE-
V2V networks in multiple regions. The closed-form model
explicitly considers the comprehensive effects of vehicular
transmission power, broadcast beacon frequency, and multi-
region traffic dynamics on EE performance.

(ii) We formulate a multi-region traffic flow dynamics
model using the MFDs. We further propose a bi-objective
joint optimization model integrating multi-region model
predictive perimeter flow control with vehicular EE commu-
nication optimization. This joint optimization model leads to
a hierarchical framework that enables the adaptive response
of LTE-V2V communication networks to the temporal-
spatial evolution of vehicle densities.

(iii) We also propose an iterative optimization method
based on the augmented Lagrangian multiplier theory,
which is integrated into the hierarchical framework for re-
alizing joint optimization. The proposed method can trans-
form constrained EE optimization into a sequence of un-
constrained subproblems and exploits derivative-free opti-
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Fig. 1. An exemplary scenario of the intelligent transportation cyber-
physical system in which the dynamics of vehicular communication
networks and urban traffic networks are coupled.

mization techniques to tackle the non-smooth and strongly-
nonlinear EE objective function. We prove the guaranteed
convergence of the proposed optimization method.

1.3 Organization

We organize the rest of the paper as follows. Section 2 pro-
vides details about our hierarchical framework of joint EE
communication optimization and model predictive perime-
ter control for multi-region LTE-V2V networks. Section 3
gives an algorithm design for solving the models. Section
4 provides simulation experiments for performance valida-
tion and comparison. Section 5 presents the main conclusion
and remarks on our future work.

2 SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Figure 1, we consider an application scenario in
a city, where the entire urban traffic network is partitioned
into several regions (or called cells). There exists at least
a base station (or an Evolved NodeB (eNodeB)) for the
coverage and service of the LTE radio access network in
each urban region. Let N = {1, 2, . . . , N} denote the set
of the urban regions where N is the region number. In the
scenario, the radio resource allocation in each region i ∈ N
is operated by the LTE network in sidelink Mode 3 for
supporting V2V applications (e.g., cooperative awareness)
with the availability of cellular infrastructure.1 The main
symbols are summarized in Table 1.

2.1 Resources and Capacity of LTE-V2V Network

As specified by the LTE-V2V standard from 3GPP [2],
the physical layer (PHY) and the medium access control
(MAC) layer of the vehicular communication network em-
ploy the single-carrier frequency-division multiple access

1. In the urban scenario, LTE networks are almost ubiquitous nowa-
days. It is reasonable to consider that resource allocation is operated
mainly in sidelink Mode 3 for connected vehicles [1], [3], [8]. For the
case of sidelink Mode 4, some studies have already developed ana-
lytical models for performance evaluation in Mode 4, such as [9]. The
different sidelink mode does not alter our methodology. As analytically
analyzed in [9], traffic density (i.e., macroscopic traffic dynamics) sig-
nificantly affects the resource allocation performance in Mode 4. Thus,
these existing analytical models can be combined with our hierarchical
framework to address more complicated resource allocation scenarios,
which is left as our future work.

TABLE 1
Main Symbols and Definitions

Symbol Definition
N set of urban regions
msubframe

RB RB number per subframe
msubframe

RB-PSSCH RB number per PSSCH subframe
Lsize beacon message size
IMCS index of a modulation and coding scheme
mbeacon

RB (Lsize, IMCS) RB number occupied by a beacon
mbeacon

subframe (Lsize, IMCS) subframe number occupied by a beacon
β (Lsize, IMCS) ratio of bandwidth occupation
fi beacon frequency used in region i
τsubframe duration of each subframe
Cbeacon

subframe (fi) number of subframes per beacon period
h (fi;Lsize, IMCS) number of vehicles for resource reuse
pi transmission power of vehicles in region i
dl distance associated with transmission link l
gLTE(dl) channel gain associated with link l
d−l distance set of l’s interference links
γ(pi; dl,d−l) SINR associated with link l
R(pi) LTE-V2V resource reuse range in region i
λi penetration rate of LTE-V2V vehicles in i
xi(t) vehicle accumulation in region i at time t
Li space-mean road length in region i
ρ(xi(t)) LTE-V2V vehicle density in region i at t
Pr(mi) probability of mi vehicles occupying RBs
Pr(outage|mi) outage probability conditioned on mi
q(xi(t), fi(t), pi(t)) outage probability of LTE-V2V network in i
Ji(xi(t), fi(t), pi(t)) EE metric of LTE-V2V network in i
x(t),f(t),p(t) collections of xi(t), fi(t), and pi(t)
J(x(t),f(t),p(t)) total EE metric of multiple regions
xi,j(t) accumulation of vehicles from i to j at t
gi(xi(t)) MFD of region i depending on xi(t)
yi,j(t) internal transfer flow from i to j at t
Qi,j(t) traffic demand generated from i to j at t
ui,j(t) perimeter flow controller between i and j
u(t) collection of ui,j(t)
W (u(t)) total vehicle accumulation of regions

(SC-FDMA). The SC-FDMA is a modified protocol of the
well-known orthogonal frequency-division multiple access
(OFDMA), which can reduce the peak-to-average power
ratio (PAPR) and support multiple channels of 10 MHz or
20 MHz. In the time domain, the LTE-V2V communication
technique organizes a wireless signal into several frames
each with the duration of 10 ms, and each signal frame
is usually divided into 10 subframes each with the dura-
tion of τsubframe = 1 ms. Each subframe further consists
of two time slots. In the frequency domain, a wireless
signal is modulated by a number of subcarriers each with
the spacing of 15 kHz. Thus, the LTE-V2V communication
network defines the smallest unit of the radio time-space
resources allocated to vehicular users as a Resource Block
(RB), and each RB contains 12 subcarriers (i.e., with the
frequency wide of 12 × 15 kHz = 180 kHz) and one time
slot of 1 ms/2 = 0.5 ms [3]. In the LTE-V2V communication
network, a group of RBs in the same subframe can constitute
a series of subchannels that are used to transmit vehicular
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data and control information. That is, we can denote the
number of the RBs per subframe by msubframe

RB and the
typical RB amount per subframe in 10 MHz channels is
msubframe

RB = 100. According to the standard specification
[46], the RBs are exploited to realize three types of phys-
ical channels, among which the physical sidelink shared
channels (PSSCH) are used to transmit application-specified
data packets that are coded in a sequence of transport
blocks (TBs), and the physical sidelink control channels
(PSCCH) are used to transmit sidelink control information
(SCI). In this paper, we consider the high-reliable and low-
latency V2V communication application scenario based on
periodically broadcasting beacons or cooperative awareness
messages (CAM). An intact beacon or CAM can be packeted
into one TB to be transmitted over the PSSCH. Thus, we
mainly focus on the shared channels and denote the number
of the RBs to be used for carrying the PSSCH per subframe
by msubframe

RB-PSSCH. A typical value of msubframe
RB-PSSCH in 10 MHz chan-

nels is msubframe
RB-PSSCH = 81 [8].

Additionally, according to the standard specification for
the LTE-V2V communication [46], given a specific beacon
or CAM size Lsize and a specific modulation and coding
scheme (MCS) IMCS, the number of the RBs occupied by
the shared channels used to transmit the packet is also
determined. We can let mbeacon

RB (Lsize, IMCS) denote the num-
ber of the RBs allocated for a beacon that depends on the
configurations Lsize and IMCS. Hence, we derive the num-
ber of the subframes occupied for transmitting a beacon,
mbeacon

subframe (Lsize, IMCS), as follows

mbeacon
subframe (Lsize, IMCS) =

⌈
mbeacon

RB (Lsize, IMCS)

msubframe
RB-PSSCH

⌉
, (1)

where d·e is the ceil function. Considering that the transmit-
ted packets are uniformly allocated over the subchannels,
we further estimate the ratio of the occupied bandwidth
over the total available bandwidth, denoted by β, as follows

β (Lsize, IMCS) =

⌈
mbeacon

RB (Lsize, IMCS)

mbeacon
subframe (Lsize, IMCS)

⌉
1

msubframe
RB

. (2)

On the other hand, let the beacon frequency of the LTE-
V2V communication network in each urban region i ∈ N be
fi in Hz. The number of the allowed subframes per beacon
period, i.e., the amount of the radio resources in the time
domain, Cbeacon

subframe (fi), is estimated by

Cbeacon
subframe (fi) =

⌊
Ti

τsubframe

⌋
, i ∈ N , (3)

where Ti is the beacon period equal to Ti = f−1
i seconds

and b·c is the floor function. Using (3) and (1), we can
calculate the maximum allowed number of the LTE-V2V
communication vehicles in a reciprocal resource reuse cover-
age that can be allocated without incurring any interference
to each other during one beacon period, h (fi;Lsize, IMCS),
as follows

h (fi;Lsize, IMCS) =

⌊
Cbeacon

subframe (fi)

mbeacon
subframe (Lsize, IMCS)

⌋
, i ∈ N . (4)

From (4), h (fi;Lsize, IMCS) indicates the service capacity of
the LTE-V2V communication network regarding its limited

time-space radio resources, which not only relies on the
network configurations Lsize and IMCS based on the stan-
dard specification but also the application-oriented design
parameter (i.e., the beacon frequency) fi. In general, increas-
ing the beacon frequency fi can increase the possibility of
the destination nodes receiving the messages and update
the received information more frequently, thus improving
the application reliability and reducing the information
dissemination latency to guarantee the quality of service
(QoS). However, a larger beacon frequency will result in
higher resource occupancy by each individual vehicle and
more redundant messages in the network, thus reducing
the tolerant number of the vehicles allocated per beacon pe-
riod in the same resource reuse coverage h (fi;Lsize, IMCS).
Therefore, there is a tradeoff between the QoS performance
of the LTE-V2V communication network and the adaption
of the beacon frequency.

2.2 Connectivity and Network-Wide Energy Efficiency
To further estimate the outage probability of a LTE-V2V
connection2, we first analyze the effective LTE-V2V resource
reuse range. Given a specific antenna gain g0, a path loss
factor at the reference distance of 1 m L0, and a path loss
exponent α in the LTE-V2V communication scenario, we
can typically evaluate the channel gain of a host LTE-V2V
transmission link l, gLTE(dl), as follows

gLTE(dl) =
g0

L0dαl
, (5)

where dl is the distance between the transmitter and the
receiver of the host transmission link l.

Let the interfering node set associated with the LTE-V2V
transmission link l in the urban region i ∈ N be Il which
consists of those transmitting nodes that can incur wireless
interferences to the host transmission link l. The received
instantaneous signal-to-noise-and-interference ratio (SINR)
over the host transmission link l, γ(pi; dl,d−l), can be
derived by

γ(pi; dl,d−l) =
gLTE(dl)pi

β (Lsize, IMCS)σ2
i +

∑
v∈Il gLTE(dv)pi

(6)

for i ∈ N , where pi is the transmission power of the LTE-
V2V communication vehicles in the urban region i, dv is the
interference link distance associated with the v-th interfer-
ence and d−l = col {dv, v ∈ Il}. σ2

i is the background noise
power in the region i. β (Lsize, IMCS) denotes the ratio of the
utilized bandwidth over the total available bandwidth as
defined in (2).

Given the minimum SINR level for correctly receiving
and decoding signals from a transmitter, γmin, and the
cooperative awareness range for any vehicular application,
R0, the transmission power pi, i ∈ N , should always satisfy
the minimum SINR level in an ideal situation where there
exist no interferences, i.e., Il = ∅. At this point, we can get

γmin ≤
gLTE(R0)pi

β (Lsize, IMCS)σ2
i

. (7)

2. In wireless communication, outage probability is a widely-used
performance metric of a wireless communication system. It indicates
the possibility that a receiver cannot receive the information from a
transmitter correctly. In this work, the outage probability is specified as
the probability that the LTE RBs cannot be allocated to a vehicle when
all the RBs have already been allocated to others in the RB reuse range.
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Combining (5) and (7), we can derive a lower bound for the
feasible transmission power design in the region i, denoted
by p−i , as follows

pi ≥ p−i =
γminβ (Lsize, IMCS)σ2

iL0R
α
0

g0
. (8)

Let R(pi) denote the LTE-V2V resource reuse range in
the urban region i ∈ N that depends on the adopted trans-
mission power pi. Generally, any an interfering node located
at the distance of R(pi) from the transmitter of the host
transmission link l will not impair the host transmission
link if the SINR of the host transmission link is not smaller
than the minimum level γmin. To derive the closed-form
design of R(pi), we suppose that the transmitter of the host
transmission link l is exactly located at the distance of R0

from its receiver and an interfering node is at the distance
of R(pi) from the transmitter of the host transmission link l.
Thus, the worst-case SINR is attained when the interfering
node is also located in the same direction as that of the
receiver. At this point, we have

γmin ≤
gLTE(R0)pi

β (Lsize, IMCS)σ2
i + gLTE (R(pi)−R0) pi

, (9)

which further leads to

R (pi)−R0 ≥ R0

(
1

γmin
− β (Lsize, IMCS)σ2

iL0R
α
0

pig0

)− 1
α

.

(10)
On the other side, the distance between the interfering

node and the receiver of the host transmission link l should
be larger than that of the host transmission link, i.e., R0.
Thus, we can also have

R (pi)−R0 ≥ R0. (11)

Combining (10) and (11), we can derive the LTE-V2V re-
source reuse range R (pi) as

R (pi) = ∆R+R0

+R0 max

{(
1

γmin
− β (Lsize, IMCS)σ2

iL0R
α
0

pig0

)− 1
α

, 1

}
,

(12)

where ∆R is a constant margin that is introduced when
considering the existence of vehicle positioning errors in
an actual LTE-V2V network. That is, as suggested by the
3GPP specification [47], [48], the LTE-V2V network relies
on the time difference of arrival (TDOA) of the uplinks
to approximately estimate the vehicle positions, which in-
evitably introduces measure errors. Thus, the resource reuse
range should take into consideration a certain margin ∆R
to deal with such location errors. For instance, according to
the technical report [49], the uplink TDOA measurements
with the assistance of five eNodeBs can achieve the position
detection accuracy of about 100 meters under the sensing-
based SPS scheme. Hence, a typical settings on ∆R can be
specified as ∆R = 100 m.

Let xi(t) (veh) denote the vehicle accumulation in the
region i ∈ N at time t ∈ R≥0 and λi denote the space-
mean penetration rate of the LTE-V2V communications in

the same region. The average density of the LTE-V2V com-
munication vehicles in i ∈ N is denoted by ρ (xi(t)), i.e.,

ρ (xi(t)) =
λixi(t)

Li
, i ∈ N , (13)

whereLi represents the average (space-mean) road length of
the road network in the urban region i. Besides, within each
urban region, we consider that the spatial distribution of the
LTE-V2V communication vehicles follows an independent
homogeneous Poisson Point Process (PPP) characterized by
the parameter ρ (xi(t)) as indicated by the current literature
[50]–[52]. Therefore, we can derive the probability that there
exist mi LTE-V2V communication vehicles allocated with
the RBs in the resource reuse range R (pi) in the region i as

Pr (mi) =
[ρ (xi(t))R (pi)]

mi e−ρ(xi(t))R(pi)

mi!
, i ∈ N . (14)

Under the condition that there already are mi vehicles
allocated with the RBs in the LTE-V2V resource reuse range
R (pi) in the region i, the outage probability of the network
is the possibility that the number of the LTE-V2V com-
munication vehicles exceeds the number of the LTE-V2V
resources. Recalling (4), the conditional outage probability is
formulated as the fraction of those LTE-V2V communication
vehicles exceeding the maximum allowed number in the
resource reuse range, i.e.,

Pr (outage|mi)

=
mi − h (fi;Lsize, IMCS)

mi
1mi−h(fi;Lsize,IMCS)≥0

(15)

for all i ∈ N , where 1mi−h(fi;Lsize,IMCS)≥0 is a binary indicator
that is equal to 1 if and only if mi − h (fi;Lsize, IMCS) ≥ 0
holds, otherwise 0. Combining (14) and (15), we can derive
the total outage probability of the LTE-V2V communication
network, denoted by q (xi(t), fi(t), pi(t)), as follows

q (xi(t), fi(t), pi(t)) =
∞∑

mi=h(fi(t);Lsize,IMCS)+1

Pr (outage|mi) Pr (mi)
(16)

for all i ∈ N . Here, we introduce t for pi and fi, and
use pi(t) and fi(t) to equivalently represent pi and fi,
respectively, in order to emphasize their time dependence.

Substituting (14) and (15) into (16), we can further get a
closed-form approximation on the outage probability as

q (xi(t), fi(t), pi(t)) =

[ρ (xi(t))R (pi(t))]
h(fi(t);Lsize,IMCS)+1 e−ρ(xi(t))R(pi(t))×

∞∑
k=0

k + 1

[h (fi(t);Lsize, IMCS) + 1 + k]

[ρ (xi(t))R (pi(t))]
k

[h (fi(t);Lsize, IMCS) + 1 + k]!

=
[ρ (xi(t))R (pi(t))]

h(fi(t);Lsize,IMCS)+1 e−ρ(xi(t))R(pi(t))

[h (fi(t);Lsize, IMCS) + 1] [h (fi(t);Lsize, IMCS) + 1]!
×

∞∑
k=0

(2)k (h (fi(t);Lsize, IMCS) + 1)k[
(h (fi(t);Lsize, IMCS) + 2)k

]2 [ρ (xi(t))R (pi(t))]
k

k!

(17)

where (a)k is the Pochhammer’s symbol that denotes the
product (a)k = a(a + 1) · · · (a + k − 1). According to
the theory of generalized hypergeometric series, we can
formally represent the summation term in (17) by using
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a specific Generalized Hypergeometric Function (GHF) as
follows

2F2

(
2 hi,t + 1

hi,t + 2 hi,t + 2
; ρi,t

)
=
∞∑
k=0

(2)k (hi,t + 1)k[
(hi,t + 2)k

]2 ρki,t
k!

(18)

with ρi,t = ρ (xi(t))R (pi(t)) and hi,t = h (fi(t);Lsize, IMCS)
for notional simplicity for all i ∈ N . Using (18), we can
derive the formal representation for the outage probability
q (xi(t), fi(t), pi(t)) as

q (xi(t), fi(t), pi(t))

=
ρ
hi,t+1
i,t e−ρi,t

(hi,t + 1) (hi,t + 1)!
2F2

(
2 hi,t + 1

hi,t + 2 hi,t + 2
; ρi,t

) (19)

for all i ∈ N .
From (19), the average connectivity can be estimated as

1 − q (xi(t), fi(t), pi(t)). Thus, we formulate the EE metric
in each urban region as the average data rate achieved per
power consumption, i.e.,

Ji (xi(t), fi(t), pi(t)) =
[1− q (xi(t), fi(t), pi(t))] fi(t)Lsize

pi(t)
.

(20)

It is noted that the EE metric in (20) reflects the amount of
the data bits that can be transmitted by consuming one unit
of energy. Based on (20), the network-wide energy efficiency
is then defined by summing up the EE of all the urban
regions as follows

J (x(t),f(t),p(t)) =
∑
i∈N

Ji (xi(t), fi(t), pi(t)) , (21)

where x(t), f(t) and p(t) are the collections of the accu-
mulation states, the broadcast frequencies, and the trans-
mission power levels in the whole regions, respectively,
i.e., x(t) = col{xi(t), i ∈ N}, f(t) = col{fi(t), i ∈ N},
and p(t) = col{pi(t), i ∈ N}. It is observed from (21)
that the evaluation of the network-wide energy efficiency
J (x(t),f(t),p(t)) relies on the spatial time-varying vehicle
density ρ (xi(t)). The optimization of J (x(t),f(t),p(t))
requires modeling the macroscopic traffic flow dynamics,
which is detailed in the following section.

2.3 Evolution Dynamics of Spatial Vehicle Density
In transportation science, the MFD of different urban re-
gions describes the relationship between the vehicle density
of the road traffic network and the regions’ outflow or the
network’s space-mean flow [21], [23]. This theoretical tool
connects the vehicle accumulation in a region to the output
flow of the region, providing a fundamental for developing
different perimeter flow controllers. Perimeter control is a
typical kind of macroscopic traffic control, which aims to
regulate the traffic flows transferring at the perimeter border
of two neighboring regions [10]. Therefore, to model the
aggregate traffic flow dynamics in the entire urban network
and derive the evolution dynamics of the spatial vehicle
density in each urban region, we use the macroscopic traffic
modeling approach based on the MFD and exploit the MFD-
based perimeter flow control.

For the urban regions i ∈ N , we further let xi,j(t) be the
accumulation of vehicles in the region i with the region j as

their destination at time t, and Qi,j(t) be the traffic demand
flow generated in the region i with the destination region j
at t, i, j ∈ N . We also denote the set of the urban regions
adjacent to i by Ni, i.e., N = ∪Ni=1Ni. Accordingly, we can
calculate the total vehicle accumulation in each region by

xi(t) = xi,i(t) +
∑
j∈Ni

xi,j(t), i ∈ N . (22)

Moreover, for each urban region i ∈ N , we consider that
there admits a well-defined MFD, denoted by gi (xi(t))
(veh/s), that captures the outflow dynamics (trip completion
flow) at accumulation xi(t). The consideration is exactly
in line with many current studies [10]–[14], [21], [53]–[62].
The MFD here describes a macroscopic similarity that all
the trips within a region have similar trip lengths at an
aggregate level, i.e., the travel distance of each vehicle inside
a region is approximately independent of the origin and
destination of its trip. According to the simulation and
empirical study [23], the MFD shape can be well approxi-
mated by a non-symmetric unimodal curve skewed to the
right (i.e., there exists a critical density maximizing gi (xi(t))
and this critical density is smaller than the half of the jam
accumulation at which the network is blocked). This allows
us to adopt a third-order polynomial with respect to xi(t) to
represent gi (xi(t)) as follows

gi (xi(t)) =
3∑
v=0

ai,v [xi(t)]
v
, i ∈ N , (23)

where ai,3 6= 0 and ai,v (v ∈ {0, 1, . . . , 3}, i ∈ N ) are the
polynomial coefficients that can be estimated from historical
traffic data in practice [10], [21], [24], [25], [60]. Here, it
is remarked that the MFD properties regarding the traffic
heterogeneity and different cases of trip patterns inside a
region have also been investigated and can be found in [10],
[24], [25]. Other alternative forms of the MFD will not alter
our proposed methodological approach in this work.

Let yi,i(t) denote the internal transfer flow in the region
i at time t, and yi,j(t) be the external transfer flow from i to
j at t. Using the MFDs, we can obtain the internal and the
external transfer flows as follows

yi,i(t) =
xi,i(t)

xi(t)
gi (xi(t)) ,

yi,j(t) =
xi,j(t)

xi(t)
gi (xi(t)) ,

(24)

for all i 6= j and i, j ∈ N . Now, we introduce the time-
varying control variables ui,j(t) and uj,i(t), ui,j(t), uj,i(t) ∈
[0, 1] for all i ∈ N and j ∈ Ni, to represent the perimeter
controllers existing between any two regions i and j. These
perimeter controllers aim to regulate the transfer flows
between any two adjacent regions. It is also noted that since
each perimeter controller is only deployed on the border
between two regions, it does not impact the internal traffic
flows inside the regions. That is, the perimeter controllers
are used to regulate yi,j(t) for any i 6= j rather than yi,i(t)
for all i ∈ N . Consequently, following the mass conserva-
tion principle, we obtain a group of ordinary differential
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equations (ODE) to describe the traffic flow dynamics of the
multi-region MFD-based system as follows


dxi,i(t)

dt
= Qi,i(t)− yi,i(t) +

∑
j∈Ni

uj,i(t)yj,i(t),

dxi,j(t)

dt
= Qi,j(t)−

∑
j∈Ni

ui,j(t)yi,j(t),

(25)

for all j ∈ Ni and i ∈ N .

2.4 Joint Optimization Framework

We aim to optimize vehicular communication and the urban
traffic network. For this goal, we develop a joint opti-
mization framework based on the model predictive control
(MPC) approach. It has a bi-level structure that minimizes
the total traffic delay of all the urban regions by manipu-
lating the perimeter controllers, meanwhile maximizing the
EE performance of LTE-V2V communications by adapting
both vehicular transmission power and beacon rate to the
macroscopic traffic dynamics in these regions.3

Specifically, let the initial time for the prediction hori-
zon of the MPC-based perimeter controllers be tc and the
terminal time be tf . We consider the prediction horizon as
t ∈ [tc, tf ]. The vehicle accumulation at tc for i, j ∈ N
is xi,j (tc), which is known as the initial condition for the
dynamics model (25). Without loss of generality, we use
the symbols a− and a+ to denote the lower and the upper
bounds of a, respectively. Hence, the lower and the upper
bounds of the perimeter controllers ui,j(t) are u−i,j ≥ 0 and

u+
i,j ≤ 1, respectively, i.e., ui,j(t) ∈

[
u−i,j , u

+
i,j

]
⊆ [0, 1]. A

lower bound of the total accumulation with respect to the
region i ∈ N is denoted by x−i ≥ 0. The jam accumulation
for i ∈ N is x+

i , which is treated as the upper bound of the
accumulation xi(t). Thus, we have xi(t) ∈

[
x−i , x

+
i

]
. Simi-

larly, the lower and the upper bounds of xi,j(t), i, j ∈ N ,
are represented by x−i,j ≥ 0 and x+

i,j ≤ x+
i , respectively, i.e.,

xi,j(t) ∈
[
x−i,j , x

+
i,j

]
⊆
[
x−i , x

+
i

]
.

Besides, for notational simplicity, we define the overall
accumulation of all the urban regions by W (u(t)) where
u(t) = {ui,j(t), j ∈ Ni, i ∈ N}, i.e., letting

W (u(t)) =
∑
i∈N

xi,i(t) +
∑
i∈N

∑
j∈Ni

xi,j(t). (26)

Given a set of the perimeter control inputs {u(t), t ∈
[tc, tf ]}, we can obtain the total vehicle accumulations of all
the urban regions by using (25) and (22) correspondingly,
{x(t), t ∈ [tc, tf ]}. Thus, we can denote such a mapping
from {u(t), t ∈ [tc, tf ]} to {x(t), t ∈ [tc, tf ]} be T , i.e.,
T : u(t)→ x(t), ∀t ∈ [tc, tf ]. The overall joint optimization

3. In transportation science, the total delay of a road traffic network is
defined as the integral of the multiple regions’ road traffic accumulation
with respect to time [10], [21], [63].

problem is formulated as a bi-level constrained nonlinear
programming model

max
f(t),p(t),t∈[tc,tf ]

:

∫ tf

tc

J (T (u(t)) ,f(t),p(t)) dt

min
u(t),t∈[tc,tf ]

:

∫ tf

tc

W (u(t)) dt

s.t. :



f−i ≤ fi(t) ≤ f
+
i , i ∈ N ;

p−i ≤ pi(t) ≤ p
+
i , i ∈ N ;

u−i,j ≤ ui,j(t) ≤ u
+
i,j , j ∈ Ni, i ∈ N ;

x−i,j ≤ xi,j(t) ≤ x
+
i,j , i, j ∈ N ;

x−i ≤ xi(t) ≤ x
+
i , i ∈ N ;

(21)− (26), t ∈ [tc, tf ].
(27)

3 OPTIMIZATION ALGORITHM DESIGN

It is difficult to directly solve an optimal global solution of
the multi-objective optimization problem (27). We resort to
Pareto optimality for joint vehicular communication opti-
mization and macroscopic traffic control (VCOMTC). There-
fore, we turn to solve a Pareto-optimal solution. A feasible
solution for (27) is considered Pareto optimal if and only if
no other feasible solution exists that can improve the quality
of any of the model’s objective criteria without deteriorating
at least one other objective criterion. Accordingly, letting
P1 (X) = −

∫ tf
tc
J (T (u(t)) ,f(t),p(t)) dt and P2 (X) =∫ tf

tc
W (u(t)) dt denote the two optimization objectives in

(27), respectively, where X = {u(t),f(t),p(t), t ∈ [tc, tf ]}
represents a feasible solution of (27), we introduce the con-
cept of Pareto-optimal feasible communication and control
solution as follows:

Definition 1 (Pareto-optimal feasible solution). A feasible
solution X∗ for (27) is non-dominated or Pareto optimal
if the following holds for any other feasible solution X
of (27), X 6= X∗,{

Pl (X
∗) ≤ Pl (X) , ∀l ∈ {1, 2};

Pl′ (X∗) < Pl′ (X) , ∃l′ ∈ {1, 2}.
(28)

When carefully looking into (27), the LTE-V2V commu-
nication optimization-oriented decision variables f(t) and
p(t) are decoupled with the optimal control objective of the
multi-region urban traffic network, P2 (X). Thus, this mo-
tivates us to decompose the multiple objective optimization
problem into two sub-problems so as to obtain a Pareto-
optimal feasible solution. One of the sub-problem is a high-
level nonlinear constrained optimization sub-problem with
respect to the LTE-V2V communications and the other is a
low-level model predictive perimeter control with the MFD.
Besides, to make the problem tractable, we also discretize
the overall problem by dividing the prediction horizon into
Kp time steps each with the duration of ∆T seconds, i.e.,
letting tf − tc = Kp∆T . The set of step indexes for the
perimeter control inputs is denoted by the set of the finite
prediction steps K = {0, 1, . . . ,Kp − 1}.
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3.1 The Low-Level Model Predictive Perimeter Control

For the low-level sub-problem, we denote the state and
control vectors by x(k) = col{xi,j(k), i, j ∈ N} and
u(k) = col{ui,j(k), j ∈ Ni, i ∈ N}. We define a state
function by Fi,j (x(k),u(k)), i, j ∈ N , as follows

Fi,j (x(k),u(k)) =

Qi,i(k)− yi,i(k) +
∑
v∈Ni

uv,i(k)yv,i(k), j = i;

Qi,j(k)−
∑
v∈Ni

ui,v(k)yi,v(k), j ∈ Ni;

0, j /∈ Ni, j 6= i.

(29)

Then, we derive the time-discrete MPC-based perimeter
control model as

min
u(k),k∈K

: C(U) =
∑
k∈K

W (u(k)) ∆T

s.t.



xi,j(k + 1) = xi,j(k) + Fi,j (x(k),u(k)) ∆T, i, j ∈ N ;

u−i,j ≤ ui,j(k) ≤ u+
i,j , j ∈ Ni, i ∈ N ;

x−i,j ≤ xi,j(k) ≤ x+
i,j , i, j ∈ N ;

x−i ≤ xi(k) ≤ x+
i , i ∈ N ;

k ∈ K.
(30)

Here, (30) presents an open-loop time-discrete MPC model
for determining the optimal perimeter control of the multi-
region urban network. Similar to the current literature [10],
[11], [14], [21], [57], [60], the MPC model with the MFD can
be solved by exploiting some well-known numerical opti-
mal control toolboxes integrating nonlinear programming
solvers, such as GPOPS-II (Next-Generation Optimal Con-
trol Software) [64], MPT (Multi-Parametric Toolbox) [65],
and MATLAB MPC toolbox [66]. Let U∗ denote the set of the
optimal perimeter control inputs obtained by solving (30),
i.e., U∗ = col{u∗(k), k ∈ K} and u∗(k) = col{u∗i,j(k), j ∈
Ni, i ∈ N} where u∗i,j(k) is the optimal perimeter control
input for the boundary between two adjacent regions i and j
at k. The optimal vehicle accumulations of the urban regions
can also be determined by x∗(t) = T (u∗(t)) for all k ∈ K.

3.2 The High-Level Communication Optimization

For the high-level sub-problem, we can formulate the time-
discrete nonlinear constrained optimization model to ob-
tain the jointly-optimal beacon frequency and transmission
power of the LTE-V2V communication vehicles, denoted by
F∗ = col{f∗(k), k ∈ K} and P∗ = col{p∗(k), k ∈ K},
respectively, where f∗(k) and p∗(k) are the optimal bea-
con frequency and transmission power, respectively. This
high-level optimization model is driven by the optimal
perimeter control U∗ of the multi-region urban traffic net-
work obtained from the low-level model, i.e., treating
x∗(t) = T (u∗(t)) for u∗(t) ∈ U∗ as the inputs of the
high-level model. Specifically, from (27), the high-level time-

discrete nonlinear constrained optimization model driven
by x∗(t) = T (u∗(k)), u∗(k) ∈ U∗, is formulated as follows

min
F,P

:V (F ,P) = −
∑
k∈K

J (T (u∗(k)) ,f(k),p(k)) ∆T

s.t. :


f−i ≤ fi(k) ≤ f+

i , i ∈ N ;

p−i ≤ pi(k) ≤ p+
i , i ∈ N ;

u∗(k) ∈ U∗, ∀k ∈ K.

(31)

where F = col {f(k), k ∈ K} and P = col {p(k), k ∈ K}.
To proceed, we propose an optimization approach

by combining the unconstrained optimization and the
derivative-free optimization techniques, which does not re-
quire any information about the gradient or the Hessian
matrix of the non-smooth objective function V (F ,P) with
respect to F and P . The underlying idea for solving the
non-smooth (31) is to transform it into an unconstrained
problem and then enable the derivative-free unconstrained
optimization technique to come into play.

To be specific, we introduce a set of nonnegative slack
variables, Z = col

{
z2
l,i(k), l = 1, . . . , 4; i ∈ N ; k ∈ K

}
, and

let µ1,i(k) = fi(k) − f−i , µ2,i(k) = f+
i − fi(k), µ3,i(k) =

pi(k) − p−i and µ4,i(k) = p+
i − pi(k) for all i ∈ N and

k ∈ K, such that those inequality constraints of (31) are
equivalently transformed into the equalities as follows

min
F,P,Z

:V (F ,P) = −
∑
k∈K

J (T (u∗(k)) ,f(k),p(k)) ∆T

s.t. :

{
µl,i(k)− z2

l,i(k) = 0, 1 = 1, . . . , 4; i ∈ N ;

u∗(k) ∈ U∗, ∀k ∈ K.
(32)

Following (32), we derive the augmented Lagrangian func-
tion L̃σ (F ,P,Z,λ) with a column of the Lagrange multi-
pliers λ = col {λl,i(k) ∈ R, l = 1, . . . , 4; i ∈ N ; k ∈ K} and
a positive penalty factor σ > 0 as follows

L̃σ (F ,P,Z,λ) =V (F ,P)

−
∑
k∈K

∑
i∈N

4∑
l=1

λl,i(k)
[
µl,i(k)− z2

1,i(k)
]

+
σ

2

∑
k∈K

∑
i∈N

4∑
l=1

[
µl,i(k)− z2

1,i(k)
]2
.

(33)

Based on (33), we can obtain the following result:

Lemma 1. The optimization of L̃σ (F ,P,Z,λ) is equivalent
to the optimization of Lσ (F ,P,λ) where Lσ (F ,P,λ)
is given as

Lσ (F ,P,λ) =V (F ,P)

+
1

2σ

∑
k∈K

∑
i∈N

4∑
l=1

{
ψ2
l,i(k)− λ2

l,i(k)
}
(34)

and ψl,i(k) is given as

ψl,i(k) =

{
λl,i(k)− σµl,i(k), λl,i(k) ≥ σµl,i(k);

0, otherwise.
(35)
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The proof of Lemma 1, which is omitted here for the
sake of saving space, is provided in Appendix B in the
supplementary material. To proceed, we provide another
lemma based on the matrix theory as follows . The proof
of Lemma 2 is also detailed in Appendix C in the supple-
mentary material.
Lemma 2. Given matrices A ∈ Rn×n and B ∈ Rn×m, the

strict inequality xTAx > 0 always holds true for any
non-zero column vector x 6= 0, x ∈ Rn×1, satisfying
BTx = 0, if and only if there exists a positive constant
σ∗ > 0, such that xT(A + σBBT)x > 0 always holds
true for any σ ≥ σ∗.
For the simplicity of notations, let φl,i(k) = µl,i(k) −

z2
l,i(k) for all l = 1, . . . , 4, i ∈ N , and k ∈ K. The Lagrangian

function of (32) can be expressed as follows

L̃ (F ,P,Z,λ) = V (F ,P)−
∑
k∈K

∑
i∈N

4∑
l=1

λl,i(k)φl,i(k),

(36)

and the augmented one in (33) is re-arranged as

L̃σ (F ,P,Z,λ) = L̃ (F ,P,Z,λ) +
σ

2

∑
k∈K

∑
i∈N

4∑
l=1

φ2
l,i(k).

(37)

Since the objective function V (F ,P) is non-smooth
within its feasible domain, there exist some finite feasible
points, i.e., some feasible values of F and P , at which
L̃σ (F ,P,Z,λ) is not continuous or not differentiable. At
such non-smooth points, L̃σ (F ,P,Z,λ) can attain its local
minimum value. Thus, in the following, we mainly analyze
the local optimality of the unconstrained L̃σ (F ,P,Z,λ) at
the smooth points.
Theorem 1. Suppose that V (F ,P) is continuously twice

differentiable at a feasible F∗ and a feasible P∗, and
there also exist some feasible Z∗ and λ∗ such that F∗
and P∗ satisfy the second-order sufficient optimality
conditions of (32). There must exist a positive σ∗ > 0
such that F∗ and P∗ are a strict local minima of the
following unconstrained optimization

min
F,P

: L̃σ (F ,P,Z∗,λ∗) (38)

for any σ ≥ σ∗. In addition, if there exist a feasible F̄ and
a feasible P̄ , i.e., meeting φl,i(k) = 0 for all l = 1, . . . , 4,
i ∈ N , and k ∈ K, which are a local minima of

min
F,P

: L̃σ̄
(
F ,P, Z̄, λ̄

)
(39)

for some Z̄ , σ̄ > 0 and λ̄, F̄ and P̄ must also be a local
minima of (32).

Theorem 2. There must exist a positive σ∗ > 0 such that for
any σ ≥ σ∗, a local minimum point obtained by solving
the following unconstrained problem

min
F,P,λ

: Lσ (F ,P,λ) (40)

is also a local minimum point of (32).

The proofs of Theorems 1 and 2 can be found in Appen-
dices D and E in the supplementary material, respectively.

Based on these two theorems, it is observed that solving
the constrained (32) can be achieved by solving the un-
constrained (40) that does not require an infinite positive
penalty factor. Instead, in (40), the penalty factor σ is only a
sufficiently large but finite positive number. Such a property
is quite important since it allows us to practically design as
well as implement an iterative algorithm to approach the
locally optimal solution of (32). Let F [τ ], P[τ ] and λ[τ ] be
the feasible points and Lagrangian multipliers obtained at
the τ -th iteration, which satisfy the conditions in Theorem
1. From (S.10), we can get

∇SV (F [τ ],P[τ ])− Φ(S) (λ[τ ]− σφ (F [τ ],P[τ ])) = 0,
(41)

where φ (F [τ ],P[τ ]) denotes the value of φ evaluated at the
specific points F [τ ] and P[τ ] at iteration τ .

On the other hand, from Theorem 1, F̄ , P̄ and λ̄ are the
local minimizer of (32), such that we also derive the gradient
condition of its Lagrangian function (36), i.e.,

∇SV
(
F̄ , P̄

)
− Φ(S)λ̄ = 0. (42)

By comparing (42) and (41), we can see that the convergence
condition of iterations on the Lagrangian multipliers λ[τ ]
is enforcing φ (F [τ ],P[τ ]) → 0 as τ → ∞. Therefore, we
derive the iterative formula for the Lagrangian multipliers
as follows

λ[τ + 1] = λ[τ ]− σφ (F [τ ],P[τ ]) , τ ∈ Z>0. (43)

Recall the definition of φl,i(k), i.e., φl,i(k) = µl,i(k)−z2
l,i(k),

and the derivation of the auxiliary variable z2
l,i(k) in (S.4).

Substituting the expression of z2
l,i(k) into φl,i(k), we can

further re-arrange (43) as

λl,i,τ+1(k) =

{
λl,i,τ (k)− σµl,i,τ (k), λl,i,τ (k) ≥ σµl,i,τ (k);

0, otherwise.
(44)

for all l = 1, . . . , 4, i ∈ N , k ∈ K, and τ ∈ Z>0, where
we use λl,i,τ (k) and µl,i,τ (k) to denote λl,i(k) and µl,i(k)
evaluated at iteration τ , respectively.

To measure the convergence performance, we introduce
a stop criterion for iterations as ετ based on (44)

ετ =

(∑
k∈K

∑
i∈N

4∑
l=1

ξ2
l,i,τ (k)

) 1
2

, (45)

where ξl,i,τ (k) is defined as

ξl,i,τ (k) =

{
µl,i,τ (k), λl,i,τ (k) ≥ σµl,i,τ (k);
λl,i,τ (k)

σ , otherwise.
(46)

Thus, given a tolerance ε > 0 where ε is a sufficiently
small number, the iterations {F [τ ],P[τ ],λ[τ ], τ ∈ Z>0} is
considered to converge when ετ ≤ ε is met at a certain τ .

Now, based on the theorems presented above, we pro-
pose an iterative method as shown in Figure 2, which com-
bines by exploiting a derivative-free optimization technique
to solve the unconstrained optimization to approach the
optimal solution of the original problem (32). In addition,
we also use the stop criterion based on ετ to adapt the
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Fig. 2. The high-level LTE-V2V communication optimization approach.

updating of the penalty factor. It is remarked that there cur-
rently exist many well-known derivative-free optimization
methods, such as generalized pattern search (GPS), simu-
lated annealing (SA), particle swarm optimization (PSO).
Our model transformation enables these derivative-free op-
timization methods to solve the subproblem, which do not
need any information on the gradient of the non-smooth
objective function V (F ,P).

3.3 Joint Optimization Method of Vehicular Communi-
cation and Macroscopic Traffic Control
Combining the low-level and high-level models above, we
develop a joint optimization framework of vehicular com-
munication and macroscopic traffic control as in Figure 3.
According to much literature from transportation science
[10], [13], [21], [57], [59], [60], the multi-region MFDs can be
easily estimated by using real-time measurements from road
traffic sensors such as loop detectors, vehicles’ GPS trajecto-
ries, and road-side video monitors. Many existing advanced
estimation techniques, including the nonlinear horizon esti-
mation approach [60], can also be applied to obtain origin-
destination (OD) demands and traffic accumulation in our
urban cities. [59] also shows that we can use an unscented
Kalman filter (UKF) to enhance the accuracy in estimating
average trip length and traffic accumulations, providing the
basis for the practical realization of MFD-based perimeter
flow control. In the implementation framework, a central
cloud server is considered to collect real-time traffic data
of the multiple urban regions via traffic sensors and then
solve the MFD-based MPC model (30) to obtain a sequence
of perimeter control inputs U∗ over the prediction horizon.
The low-level MPC model also feedbacks the predicted
traffic flow dynamics as well as the perimeter control inputs
to the high-level vehicular communication optimization
model (40), driving the high-level model to get the optimal
frequency and power solutions (F∗,P∗). The joint opti-
mization solution sequences {F∗,P∗,U∗} are distributed

to the road-side resource management infrastructures (e.g.,
eNodeBs) of the LTE-V2V networks and the perimeter
controllers, respectively. For real-time implementation, only
the first communication and control actions in the solution
sequences, f∗(0) ∈ F∗, p∗(0) ∈ U∗, u∗(0) ∈ U∗, are
applied by the execution entities (i.e., the LTE eNodeBs and
perimeter controllers), and the joint optimization procedure
is carried out again by moving the prediction horizon.4

For the joint optimization framework, we can have the
following property to characterize the obtained joint solu-
tion {F∗,P∗,U∗}. The corresponding proof is provided in
Appendix F in the supplementary material.
Theorem 3. Suppose that U∗ is obtained from the receding

horizon optimization (30) satisfying C (U∗) < C (U),
and {F∗,P∗} are obtained from the unconstrained op-
timization (40) with the specified perimeter control U∗.
{F∗,P∗,U∗} constitute a Pareto-optimal feasible solu-
tion for the original system model (27).

Interestingly, the joint solution {F∗,P∗,U∗} obtained by
our proposed framework is also a Nash equilibrium by def-
inition, when we treat the bi-level optimization problem as
a special form of Stackelberg game. That is, two interactive
agents, a high-level leader and a low-level follower, imple-
ment the communication optimization and the traffic control
of the multiple regions, respectively. A game-theoretical
interpretation is that the leader optimizes its own actions
{F ,P}, given that the follower optimizes its own actions
{U}. With the joint actions {F∗,P∗,U∗}, both the agents
reach a Nash equilibrium since they cannot improve their
own individual objective unilaterally without deteriorating
the other’s individual objective.

4 PERFORMANCE EVALUATION

This section provides simulation results on the performance
comparison between our proposed method and others. The
online supplementary material presents expanded results
with different scenario configurations in Appendix H.

4.1 Simulation Settings
For simulation demonstration, we consider a three-region
urban traffic network, N = {1, 2, 3}, where each region
is adjacent to the others and all the regions have different
MFDs. We refer to the shape of the empirical MFD observed
in Yokohama as reported in [23], which can be well charac-
terized by the following three-order polynomial [21]

gYok (x(k)) =

1.4877× 10−7x3(k)− 2.9815× 10−3x2(k) + 15.0912x(k)

3600
(47)

4. In macroscopic traffic control, the central cloud is deployed in a
city’s traffic management center (TMC). This center is the hub of the
city’s traffic control system connected to signal controllers at each inter-
section of the road network [67]. The traffic control signal is transmitted
via wire connections (e.g., fiber-optic communication) from the center
to those traffic controllers. Thus, in such a centralized architecture, the
end-to-end latency between the control activation in different regions
is minor. Considering large-scale deployment and hierarchical control
architectures, the impact of control signal transmission delays, even in
the order of several hundred milliseconds, can be reasonably neglected
since the traffic signals are generally operated on a cycle duration of
several tens of seconds [10]–[13].
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Fig. 3. The implementation framework of our joint optimization method.

that attains the maximum level gYok(xYok,cr) = 6.3 veh/s at
the critical accumulation xYok,cr = 3400 veh. The accumula-
tion at the jammed traffic density is about x+

Yok = 10000 veh.
Thus, to simulate different MFD shapes of the urban regions,
we introduce a scaling factor ξi > 0 and set their MFDs
to gi (xi(k)) = ξigYok (xi(k)) for each i ∈ N . Similar to
the simulation settings in [57], we specify ξ1 = 1.2 for the
region i = 1, ξ2 = 1.0 for i = 2 and ξ3 = 0.8 for i = 3.
Figure 4 shows the MFDs of the multiple urban regions in
our simulations. The time-varying traffic flow demands over
the time horizon [0, 12000] (s) are shown in Figure 5, which
simulate the non-peak-hour and peak-hour situations. Other
parameter settings used in predictive perimeter control are
summarized in Table 2 based on the current literature.5

We take into consideration two types of the MCSs, i.e.,
a Quadrature Phase Shift Keying (QPSK)-based MCS and
a Quadrature Amplitude Modulation using 16 different
phase-amplitude combinations (16-QAM). Following [8],

5. The duration of each time step in implementing the predictive
perimeter control is usually configured according to the time resolution
of macroscopic traffic flow data collected by road traffic sensors and
the control cycle of signalized intersections. According to much current
literature [10], [11], [13], [21], [60], this time duration is in the order
of several tens of seconds in large-scale urban road networks. For
example, Reference [21] configures their controller’s time step to a cycle
duration of typical signalized intersections, 60 s. [10] sets the duration
of each control step to about 50 s, while [13] uses a longer control
interval, i.e., 180 s. Thus, since the predictive perimeter controller
drives the EE optimization model, the communication optimization is
performed per perimeter control cycle.

Numerous studies on perimeter traffic flow control in transportation
science employ simulation-based approaches to validate their models
and control schemes, particularly considering large-scale urban macro-
scopic traffic control scenarios. For example, [13] partitions the road
traffic network of Downtown San Francisco into two regions for their
simulations. References [10], [19], [21], [54], [63] also consider two-
region case studies. In [12], the researchers partition their test site into
three regions. Following these existing studies, we consider a three-
region case study for performance demonstration. In our paper, the
parameters for macroscopic traffic flow simulations are referred to
in the existing literature, such as [21], [23], [57]. The communication
parameters are configured according to Release 14 of LTE-V2V commu-
nication standard introduced by 3GPP. The communication settings are
also adopted in many other studies, such as [8], [35]. Other simulation
scenarios do not alter our proposed methodology.

TABLE 2
Parameter Settings for MPC-based Perimeter Flow Control

Parameter Value Parameter Value

x(0) [1, 3, 5]T × 103 (veh) ∆T 50 s

[u−i,j , u
+
i,j ] [0, 1] Kp 30

[x−i , x
+
i ] [0, 104] (veh) [x−i,j , x

+
i,j ] [0, 104] (veh)

TABLE 3
Simulation Settings on mbeacon

RB (Lsize, IMCS) with the fixed beacon
size Lsize = 200 bytes over 10 MHz channel

IMCS Modulation mbeacon
RB γmin

1 QPSK 72 −0.21 dB

2 16-QAM 16 12.85 dB

TABLE 4
Parameter Settings for LTE-V2V Communications

Parameter Value Parameter Value

g0 3 dB L0 47.86 dB

α 2.75 σ2
i −95 dBm

Lsize 200 bytes R0 200 m

the number of the RB allocated for broadcasting a beacon,
mbeacon

RB (Lsize, IMCS), and the minimal SINR requirement,
γmin, under these two different MCSs are given in Table
3. Other parameter settings for LTE-V2V communications
are also referred to in the existing literature and the 3GPP
standard specification [8], [46], [68], as given in Table 4.

4.2 Performance Verification
4.2.1 Model predictive perimeter control
We use the aforementioned case study to compare the effect
of the model predictive perimeter control to a baseline in
which the perimeter traffic flows are not restricted. Figures
6 to 8 show the model predictive perimeter control inputs
of each urban region and the evolution of the transfer traffic
flows from each region with and without the model predic-
tive perimeter control over the simulation horizon. Figure
6 shows the evolution of the multi-region transfer traffic
flows without the perimeter control. It is witnessed for this
non-control case that the urban region i = 3 experiences
traffic congestion or even gridlock after about 3000 s due
to its increasing transfer flows received from the other two
regions. By comparison, Figures 7 and 8 shows the effect
of the MPC-based perimeter control method. From Figure
7, it is seen that most of the perimeter transfer flows from
the three urban regions are promoted with the 100% control
except those from the regions i = 1, 2 to the region i = 3. In
particular, the perimeter controls on the transfer flows from
the regions 1 and 2 to the region 3, u1,3(t) and u2,3(t), de-
crease at about 1350 s and 800 s, respectively. This is because
the total exogenous traffic demands from the regions i = 1, 2
to the region i = 3 significantly grow as shown in Figure 5.
The transfer flows to i = 3 are restricted by the perimeter
controllers of the regions i = 1, 2 in order to avoid the
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Fig. 5. The time-varying traffic demands of the three urban regions.

traffic congestion in their destination region. From Figure
8, it can be observed that the transfer flows of all the urban
regions can be stabilized and maintained below the level of
1000 veh after about 6000 s under the MPC-based perimeter
control. In addition, the vehicle accumulation of each region
does not exceed the jam point, i.e., x+

i = 10000 veh, and
the model predictive perimeter control method is shown
to clear the traffic network in Figure 8. It is apparent that
utilizing the model predictive perimeter control based on
the multi-region MFDs can reduce vehicles’ trip delays and
thus improve the system performance in terms of road
traffic efficiency.

4.2.2 Vehicular communication optimization
To verify the high-level LTE-V2V communication optimiza-
tion method, we use the snapshot of the multi-region traffic
flow dynamics at the beginning time instant (i.e., at t = 0 s)
as the input information of the proposed optimization
method. The feasible region of the transmission power is set
to [−30, 20] (dB) and that of the broadcast beacon frequency
is [1, 100] (Hz). Figures 9 and 10 show the EE distribution
snapshot of each region’s LTE-V2V network as well as the
EE optimization convergence behaviors under both QPSK
and 16-QAM MCSs. From the heatmaps of Figure 9, we
can see that the EE peak of the region i = 1 is higher
than those of the regions i = 2, 3. The underlying reason

0 2000 4000 6000 8000 10000 12000
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Fig. 6. The dynamics of the transfer flows from each urban region without
the MPC-based perimeter control.
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Fig. 7. The perimeter control inputs of the urban regions.

0 2000 4000 6000 8000 10000 12000

0

1000

2000

3000

4000

5000

Fig. 8. The dynamics of the transfer flows from each urban region with
the MPC-based perimeter control.

is that the vehicle accumulation of i = 1 at the snapshot is
lower than the other two urban regions as shown in Figure
8, and more RBs of the LTE network can be allocated to
each vehicle in i = 1. The contours in the heatmaps also
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Fig. 9. The convergence of the vehicular communication optimization
with QPSK MCS.

Fig. 10. The convergence of the vehicular communication optimization
with 16-QAM MCS.

indicate that the EE distribution per urban region is a non-
smooth and nonlinear function with respect to the power
and frequency decision variables. Figure 9 also shows that
a higher beacon frequency of LTE-V2V communications can
be supported by more allocated RBs and thus improve the
cooperative awareness among LTE-V2V vehicles. Besides,
it is observed that our proposed optimization method can
stably converge to the global optimal EE point of all the
urban regions only after several tens of iterations. Figure 10
also shows the similar results. By comparison, the EE peaks
of the multi-region LTE-V2V networks under the 16-QAM
MCS are lower than those under the QPSK. The main reason
is that the QPSK MCS can have more RBs for allocating a
beacon (as reported in Table 3) and the number of vehicles
to be effectively supported in the LTE resource reuse range
increases. Hence, the QPSK MCS allows more LTE-V2V
vehicles per urban region and improves the network EE
under the same vehicle density. Together, the results from
both Figures 9 and 10 verify the highly-efficient global
convergence of the proposed method for the high-level LTE-
V2V communication optimization of the multiple regions
even with a constrained non-smooth EE objective function.

4.3 Performance Comparison

To demonstrate the performance of our proposed method,
the VCOMTC, as detailed in Figure 3, we use a case study
that follows the simulation settings in Subsection 4.1 to
compare our method to two other baselines and one another
strong method. One baseline method follows the vehicu-

lar communication standard to adopt a constant power of
pi(t) = 23 dBm while a conservative beacon frequency
of fi(t) = 10 Hz for all i and t for the high-level LTE-
V2V communications, and also integrates such Conservative
Communication Policy (CCP) with the multi-region model
predictive perimeter control. The other baseline also uses
the same transmission power but a more aggressive beacon
frequency, 100 Hz, and also combines such Aggressive Com-
munication Policy (ACP) with the MPC-based perimeter
control. For a better understanding of the joint optimization
impact, we further implement another strong method for
vehicular communication optimization, denoted by VCO,
that uses the advanced Lagrangian constrained optimiza-
tion at the high level for the multi-region LTE-V2V commu-
nications but without integrating the multi-region perimeter
control at the low level.6

Figure 11 compares the evolution of the EE metric per ur-
ban region over the simulation horizon under these compar-
ative methods. As can be seen, the two baselines, the CCP
and the ACP methods, perform worse than the other two
implementing the high-level vehicular communication opti-
mization, since they use constant power and frequency poli-
cies and cannot optimize the LTE-V2V resource allocation
dynamically, even though integrating the model predictive
perimeter control at the low level. Our proposed method,
the VCOMTC, optimizes the multi-region EE performance
dynamically and is able to adapt to the time-varying spatial
distribution of vehicles by using the MPC-based multi-
region perimeter control at the low level. When the transfer
traffic flows are stabilized and the vehicle accumulation per
region under the low-level perimeter control converges to
the lowest level after about 8000 s as illustrated in Figure 8,
the EE metric of the joint optimization method reaches at
the maximal level. From Figure 11, it is seen that, when the
vehicle densities of these urban regions grow due to their in-
creasing traffic demands, e.g., within about [2000, 4000] (s)
as in Figure 5, the EE metrics of the regions decrease, since
the LTE-V2V resources are limited. Figure 11 also shows
that the EE metrics of the regions under the comparative
methods using the QPSK are higher than those using the 16-
QAM on average. This is due to the fact that the QPSK MCS
can allocate more RBs for broadcasting beacons and improve
the communication capacity compared to the 16-QAM. By
comparison, the VCO method can achieve higher EE than
our method for the specific regions i = 1, 2 during the first
7000 s. The main reason is that the VCO without the low-
level model predictive perimeter control does not restrict the
perimeter transfer flows and thus drives the vehicle accu-
mulations of the regions i = 1, 2 to a lower level during the
beginning time horizon, in particular within [1000, 7000] (s)
as shown in Figure 6. However, even though our joint
optimization method experiences a worse-EE stage since the
controlled regions i = 1, 2 preserve slightly more vehicle
accumulations within [1000, 7000] (s), the proposed method

6. The baseline methods are implemented based on the LTE-V2V
communication standard, which are also widely employed in the
literature, such as [1], [3], [8], for performance comparison. Besides,
the advanced method for performance comparison follows the state-
of-the-art resource optimization approach, the Lagrangian constrained
optimization, to optimize power and radio resources, which has also
been widely investigated in the related works [26], [27], [40].
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using the model predictive perimeter control stabilizes the
vehicle accumulations of i = 1, 2 to the low level and thus
can achieve the high EE performance similar to that of the
VCO method after 7000 s. More importantly, for the region
i = 3, the proposed joint optimization method can achieves
much higher EE performance than the VCO, in particular
after about 1000 s. When using our VCOMTC, the high-
level communication optimization is driven by the low-
level macroscopic traffic control and the system dynamically
adapts the global vehicle accumulations to avoid congested
traffic or gridlock in each region. Hence, as shown in Figures
5 and 8, the vehicle accumulation of the region i = 3 is
stabilized to a much lower level by using the MPC-based
perimeter control compared to that in Figure 6, even though
this region experiences higher exogenous traffic demands.
The VCO without the perimeter control cannot suppress
the overshoot in the vehicular accumulation of i = 3
and experiences heavy traffic jam, which, in turn, leads
to a remarkable decrease in the region EE performance. In
particular, since the limited LTE resources are not sufficient
to support the massive jammed traffic in the region i = 3,
the VCO method even performs worse than the baseline
method, i.e., the ACP. It is obvious that integrating the low-
level model predictive perimeter control with the high-level
vehicular communication optimization better benefits the
system from the perspectives of improving the region traffic
efficiency and EE performance.

To provide better insight into the strength of the pro-
posed method, we further report two system-level key
performance indicators (KPIs), the accumulated energy ef-
ficiency over the whole simulation time and the fairness
index in resource utilization7. Figure 12 shows that both our
VCOMTC and the VCO methods produce much higher EE
than the other two baselines. Specifically, the accumulated
EE metric achieved by our VCOMTC is about 12.24% and
9.57% higher than that by the VCO under the QPSK and the
16-QAM, respectively. In Figure 13, we compare the fairness
indexes of our method and the VCO in terms of resource
utilization over time. It is observed that the fairness index
of the VCOMTC is always higher than that of the VCO and
can stably converge to the maximal level, i.e., the 100%-
fairness level, after about 7000 s under either the QPSK or
the 16-QAM cases. By contrast, the VCO reduces the fairness
index and can maintain the fairness level of only 72.31%
and 69.75% during the last 5000 s under the QPSK and
the 16-QAM, respectively. The main reason is that using
the low-level MPC-based perimeter control is better able to
balance the traffic flow distributions over the multiple urban
regions so as to minimize the system-wide traffic delays.
Different from the VCO without the perimeter control, the
VCOMTC method avoids traffic congestion and accumula-
tion overshoot in each region and finally arrives at the multi-
region consensus in their temporal-spatial traffic distribu-

7. Since the vehicle density and traffic flow of the multiple regions
differ from each other, the EE performance of these regions’ LTE-V2V
networks is also different. Unfair resource utilization will result in
uneven EE performance distribution over these regions. Thus, we resort
to Jain’s fairness index, a well-known metric used for measuring the
fairness of resource allocation among multiple systems, to demonstrate
the ability of different methods to guarantee even performance distri-
bution. The formulation of the fairness index is detailed in Appendix G
in the supplementary material.

Fig. 11. The evolution of the multi-region EE metrics under comparative
methods.
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Fig. 12. The system-level accumulated EE under comparative methods.

tions. The high-level LTE-V2V communication optimization
of the multiple regions is dynamically driven by the multi-
region traffic dynamics under the low-level model predic-
tive perimeter control. Therefore, the VCOMTC method
guarantees much better fairness in the LTE-V2V communi-
cation resource utilization for multi-region EE optimization.
These results together verify the remarkable benefit brought
by joining the macroscopic traffic control with the vehicular
communication optimization in the hierarchical framework.

5 CONCLUSION AND FUTURE WORK

In this paper, we focus on cooperative awareness of con-
nected vehicles based on LTE-V2V communication net-
works and propose an MPC-based hierarchical framework
that joins the perimeter traffic flow control using the MFDs
of multiple urban regions into the holistic EE optimiza-
tion of the multi-region LTE-V2V communication networks.
Our method integrates the multi-region traffic flow dy-
namics under control to drive vehicular EE communica-
tion optimization. The proposed joint optimization design
enables multi-region LTE-V2V communications to adapt to
the temporal-spatial macroscopic traffic evolution, provides
insight into the coupling between the communication net-
works and traffic networks, and improves existing solu-
tions. Using simulation experiments, we show that our joint
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Fig. 13. The evolution of Jain’s fairness index in resource utilization
under comparative methods.

optimization method, compared to existing approaches,
provides balanced temporal-spatial traffic flows, improved
global EE communication performance, and better global
fairness in network resource utilization. However, chal-
lenges remain for our proposed approach to systematically
optimizing connected vehicles, such as the need for dis-
tributed or decentralized computation and synchronization
in controlling and optimizing large-scale networks. As a
potential direction in future work, event-triggered MPC
control approaches can also be developed for perimeter
flow control and thus combined with the EE optimization
of vehicular networks.
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APPENDIX A
ADDITIONAL LITERATURE REVIEW

Considerable studies have developed various EE optimiza-
tion approaches based on convex approximation, mixed
integer programming, and learning-based optimization [1]–
[5]. In their system optimization models, EE objective as
one of the important key performance indicators (KPIs) is
usually defined as the transmission data rate achieved by
consuming per unit power, which involves transmission
power and data rate or beacon rate as key decision variables.
Thus, many EE optimization models in the recent literature
focus on power and rate control. For example, [6] considers
the competitive behavior of vehicular users and proposes a
non-cooperative game-theoretical approach to adapt power
and beacon rate. In [7], the authors focus on a congested
cross-road scenario and combine a k-means clustering algo-
rithm with power allocation for cooperative vehicular com-
munications. In [8], the authors develop a joint optimiza-
tion framework that integrates electric vehicles’ wireless
charging, power allocation, and RB assignment to improve
the EE performance of cellular V2X networks. [9] aims
to optimize the capacity of NOMA-based V2X networks.
The researchers combine graph theory and game theory to
design a two-stage scheme to control vehicular users’ power
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in a centralized and distributed manner, respectively [9].
Besides, [10] proposes an altruistic short-term prediction
scheme to estimate local vehicle density in the coverage
of a vehicle and develops a congestion control protocol via
power and rate adaption using the density prediction. Due
to the high mobility of vehicles, vehicular wireless chan-
nels are time-varying and in the presence of uncertainties.
In this regard, some researchers focus on robust power
optimization [11], [12], developing a statistical leaning al-
gorithm to estimate the channel uncertainties and exploit
the second-order cone programming technique to minimize
the transmission power under the uncertainty set. In addi-
tion to power control, adaptive beaconing approaches have
been investigated in the current literature. In this direction,
the beaconing rate is adjusted according to the estimated
channel load [13] or the channel’s congestion degree [14].
In [15], the authors employ different preambles to design a
distributed and adaptive reservation-based MAC protocol,
allowing them to reserve resources, detect beacon collisions,
and handle collisions to improve the reliability of vehicular
beaconing. In some studies [16], [17], highly accurate time
synchronization and positioning algorithms are applied to
enhance vehicular beaconing applications. The above stud-
ies show success in improving the performance of vehicu-
lar networks at a microscopic scale. However, considering
large-scale deployment in a city, they need to touch on the
critical problem of optimizing the communication networks
at a macroscopic scale, a spatial aggregation scale, regarding
the macroscopic traffic flow dynamics of the city.

Macroscopic traffic dynamics modeling and control is
crucial in managing large-scale road traffic networks within
urban areas and has garnered increasing attention from the
transportation community. Many research endeavors have
been dedicated to macroscopic traffic control, particularly
developing advanced perimeter control approaches utiliz-
ing macroscopic fundamental diagrams (MFDs) in urban
areas [18]–[33]. The theoretical proposition of MFD is orig-
inally presented in [34] and verified by using simulated
or empirical data collected from real urban cities such as
Yokohama, Japan [35]–[37]. The MFD is introduced to model
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the aggregated traffic flow dynamics in multiple urban
regions. It describes the relationship between multi-region
space-mean flows (or outflows defined by trip completion
flows from the regions) and vehicle densities evolving over
time. While many existing studies have shown a signif-
icant advance in designing and applying various MFD-
based perimeter flow control approaches to balance traffic
load distribution over multiple adjacent regions and relieve
traffic congestion, their solutions do not cope with the
issue of vehicular communication and networking. In the
transportation community, few research efforts are made
on joint vehicular communication optimization and macro-
scopic traffic control from multi-disciplinary perspectives.

APPENDIX B
PROOF OF LEMMA 1
From (33), it is seen that L̃σ (F ,P,Z,λ) is continuously
differentiable with respect to the nonnegative slack variables
Z . Thus, even though V (F ,P) is not smooth and its gradi-
ent and Hessian matrix may not be available, the gradient
of L̃σ (F ,P,Z,λ) with respect to Z always exists. At this
point, in order to determine an locally optimal Z , we can let
∇Z L̃σ (F ,P,Z,λ) = 0 according to the well-known first-
order optimality conditions, i.e., the Karush-Kuhn-Tucker
(KKT) conditions, from which we further derive

zl,i(k)
[
λl,i(k)− σ

(
µl,i(k)− z2

l,i(k)
)]

= zl,i(k)
[
σz2

l,i(k)− (σµl,i(k)− λl,i(k))
]

= 0
(S.1)

for all l = 1, . . . , 4; i ∈ N ; k ∈ K. (S.1) can indicate two
specific cases as follows:

i) If σµl,i(k)− λl,i(k) ≥ 0, the optimum is attained at

z2
l,i(k) =

σµl,i(k)− λl,i(k)

σ
, l = 1, . . . , 4; i ∈ N ; k ∈ K.

(S.2)

ii) If σµl,i(k)− λl,i(k) < 0, it is seen that

σz2
l,i(k) 6= (σµl,i(k)− λl,i(k)) , l = 1, . . . , 4; i ∈ N ; k ∈ K.

(S.3)

At this point, the optimum must be zl,i(k) = 0 for all l =
1, . . . , 4; i ∈ N ; k ∈ K.

Combining both the above results can yield

z2
l,i(k) =

{
σµl,i(k)−λl,i(k)

σ , σµl,i(k) ≥ λl,i(k);

0, otherwise.
(S.4)

Substituting (S.4) into L̃σ (F ,P,Z,λ) derives Lσ (F ,P,λ)
as in (34) along with (35). Hence, the lemma is proven.

APPENDIX C
PROOF OF LEMMA 2
The sufficiency in Lemma 2 immediately follows the given
conditionBTx = 0. That is, we can see σxTBBTx = 0 for
any σ ≥ σ∗, which can lead to

xTAx = xT(A+ σBBT)x > 0. (S.5)

Next, we first show the conditional necessity. That is,
assuming that there exists a positive σ∗ > 0 satisfying

xT(A+ σ∗BBT)x > 0 for any non-zero x 6= 0, x ∈ Rn×1,
we can easily see

xT(A+ σBBT)x ≥ xT(A+ σ∗BBT)x > 0 (S.6)

holds true for all σ ≥ σ∗.
To prove the overall necessity, we only need to prove the

existence of σ∗ as stated above. For this goal, we present a
proof by mathematical contradiction as follows. we suppose
that such a σ∗ does not exist and thus there must exist a non-
zero column vector yk 6= 0, yk ∈ Rn×1 such that yT

k (A +
kBBT)yk ≤ 0, i.e.,

yT
k

‖yk‖
(A+ kBBT)

yk
‖yk‖

≤ 0, (S.7)

for any a positive integer k ∈ Z>0.
It is recognized that ‖ (yk/‖yk‖) ‖ = 1. Hence, this

fact indicates that {yk/‖yk‖,∀k ∈ Z>0} is a bounded
sequence. According to the Bolzano-Weierstrass’ theorem
that any bounded sequence must have a convergent subse-
quence, we denote a convergent subsequence derived from
{yk/‖yk‖,∀k ∈ Z>0} by {xki , ki ∈ Z>0} and its limit by x̄,
i.e., limki→∞ xki = x̄ and ‖x̄‖ = 1. Similar to (S.7), for such
a convergent subsequence {xki , ki ∈ Z>0}, we have

xT
ki(A+ kiBB

T)xki ≤ 0. (S.8)

Moreover, taking the limit on both sides of (S.8) under
ki →∞ can yield

x̄TAx̄+ lim
ki→∞

ki
(
BTxki

)T
BTxki

= x̄TAx̄+ ki

∥∥∥BTxki

∥∥∥2

2
≤ 0.

(S.9)

Since the term x̄TAx̄ is deterministic, we can have
limki→∞B

Txki = BTx̄ = 0. Otherwise, if BTx̄ 6= 0,
we would see limki→∞ kix

T
ki
BBTxki = ki‖BTx̄‖22 → ∞,

which is contradictory with (S.9). Combining BTx̄ = 0 and
(S.9) also leads to x̄TAx̄ ≤ 0, which is contradictory with
the condition of the theorem. At this point, the contradiction
occurs. Therefore, the existence of σ∗ holds true and the
overall lemma is proven.

APPENDIX D
PROOF OF THEOREM 1
At the continuously twice-differentiable feasible points, we
can derive the gradient of L̃σ (F ,P,Z∗,λ∗) with respect to
F and P as follows

∇SL̃σ (F ,P,Z∗,λ∗) = ∇SL̃ (F ,P,Z∗,λ∗) + σΦ(S)φ,
(S.10)

where S denotes S = col{F ,P}, φ is a column vector
as the collection of all φl,i(k), i.e., φ = col{φl,i(k), l =
1, . . . , 4; i ∈ N ; k ∈ K}. Φ(S) is the gradient matrix
of φ, i.e., Φ(S) = (∇Sφl,i(k), l = 1, . . . , 4; i ∈ N ; k ∈ K).
According to the second-order sufficient optimality condi-
tions of (32), the feasible F∗ and P∗ satisfy the constraints
φl,i(k) = 0 for all l = 1, . . . , 4, i ∈ N , and k ∈ K, and also
∇SL̃ (F∗,P∗,Z∗,λ∗) = 0. Thus, we can see

∇SL̃σ (F∗,P∗,Z∗,λ∗) = ∇SL̃ (F∗,P∗,Z∗,λ∗) = 0.
(S.11)
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In addition, based on (S.10), the Hessian of
L̃σ (F ,P,Z∗,λ∗) with respect to F and P is given
by

∇2
SL̃σ (F ,P,Z∗,λ∗) =∇2

SL̃ (F ,P,Z∗,λ∗)
+ σΦ(S)Φ(S)T.

(S.12)

According to the second-order sufficient optimality condi-
tions of (32), it always holds

sT∇2
SL̃ (F∗,P∗,Z∗,λ∗) s > 0 (S.13)

for any non-zero column vector s 6= 0 with the compatible
dimension of S∗ = col{F∗,P∗} and satisfying Φ(S∗)Ts =
0 at F∗,P∗. Now, using Lemma 2, we can further conclude
that there must exist a positive σ∗ > 0 such that F∗ and P∗
satisfy

sT

(
∇2
SL̃ (F∗,P∗,Z∗,λ∗)

+ σΦ(S∗)Φ(S∗)T

)
s

= sT∇2
SL̃σ (F∗,P∗,Z∗,λ∗) s > 0

(S.14)

for any σ ≥ σ∗. At this point, combining both the first-order
and the second-order results of (S.11) and (S.14) can indicate
that F∗ and P∗ also satisfy the second-order sufficient
optimality conditions of (38). They are also a strict local
minima of (38).

When a feasible F̄ and a feasible P̄ meet φl,i(k) = 0 for
all l = 1, . . . , 4, i ∈ N , k ∈ K, and are a local minima of (39)
for some specific Z̄ , σ̄ > 0 and λ̄, we can have

V
(
F̄ , P̄

)
= L̃σ̄

(
F̄ , P̄, Z̄, λ̄

)
≤ L̃σ̄

(
F0,P0, Z̄, λ̄

)
= V (F0,P0) .

(S.15)

for any feasible pointF0 and P0, which also satisfy φl,i(k) =
0 for all l = 1, . . . , 4, i ∈ N , k ∈ K, and are sufficiently
closed to F̄ and P̄ . The above result indicates that the the
feasible F̄ and P̄ are a local minima of (32). At this point,
the overall theorem is proven.

APPENDIX E
PROOF OF THEOREM 2
The theorem immediately follows Lemma 1 and Theorem
1. That is, Lemma 1 shows the equivalence of the problems
(40) and (39). Thus, a local minimum of (40) is equivalent to
that of (32) and the existence of σ∗ is guaranteed according
to Theorem 1.

APPENDIX F
PROOF OF THEOREM 3
According to Theorems 1 and 2, we can see that
V (F∗,P∗;U∗) ≤ V (F ,P;U∗) holds for any feasible F
and P in (31) where V (F ,P;U∗) is used to denote the
conditional objective function based on the perimeter con-
trol U∗. Recalling C (U∗) < C (U) and the definition of
the Pareto optimality in (28), we can prove the theorem by
contradiction. That is, if there exist such a feasible perimeter
control Ũ , Ũ 6= U∗, such that it can improve the objective
of the model (31), i.e., V (F∗,P∗;U∗) > V

(
F ,P; Ũ

)
. On

the other side, it will also impair the objective of the model

(30) and does not hold the optimality for (30), i.e., there
exist some feasible U such that C

(
Ũ
)
≥ C (U). At this

point, the Pareto optimal solution must contain U∗. Since
{F∗,P∗} are obtained dependent on U∗, {F∗,P∗,U∗} is a
Pareto-optimal solution where no individual objective can
be better off without making the other individual objective
worse off. Thus, the theorem can be proven.

APPENDIX G
FORMULATION OF JAIN’S FAIRNESS INDEX

Jain’s fairness index is a widely known metric used for
evaluating the fairness of resource allocation among dif-
ferent users or systems. In the simulation experiment, we
refer to the fairness index to quantify the EE performance
distribution over different urban regions. This performance
metric denoted by FI is formulated as follows

FI =

(∑
i∈N Ji (xi(t), fi(t), pi(t))

)2
N
∑
i∈N (Ji (xi(t), fi(t), pi(t)))

2 , (S.16)

where Ji (xi(t), fi(t), pi(t)) is the achievable EE perfor-
mance metric of the region i ∈ N .

APPENDIX H
ADDITIONAL VALIDATION AND COMPARISON

This supplementary material provides more simulation
results to validate the proposed joint vehicular com-
munication optimization and macroscopic traffic control
(VCOMTC) method. We test its ability to balance the
temporal-spatial traffic flow distribution over multiple re-
gions meanwhile improving the global energy-efficiency
(EE) performance of the LTE-V2V networks in these regions,
using another different scenario configuration. Specifically,
we change the MFDs and the time-varying macroscopic traf-
fic demands of a three-region urban area and adopt the same
configurations for other communication parameters as the
main text. Figure 1 shows the MFD profile of each region,
while Figure 2 illustrates their time-varying traffic demands.
In particular, we decrease the peak-hour traffic demands of
the region i = 3 to narrow the difference between the three
regions’ traffic demands. These configurations in Figure 1
and Figure 2 differ from those in the main text. Thus, we
can examine the generality of the proposed method using
the different configurations.

Figure 3 and Figure 4 show the transfer flow dynamics
of the regions without and with the MPC-based perimeter
control, respectively. It can be observed from Figure 3 that,
even though the region i = 3 has similar traffic demands
as the other two regions in Figure 2, it experiences much
higher traffic accumulation than the regions and the total
delay of the road traffic network is considerable. The sum
of the vehicle accumulations of the region i = 3 exceeds
the jam accumulation, i.e., 104 (veh), after about 4600 s,
while the other regions are free of traffic congestion. This
result indicates a highly imbalanced traffic distribution over
the regions when the regions do not adopt the proposed
perimeter control approach. By comparison, when applying
the MPC-based perimeter control, the three regions’ vehicle
accumulations can always be regulated in an uncongested
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Fig. 1. The MFDs of a three-region urban area.

0 2000 4000 6000 8000 10000 12000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 2. The time-varying traffic demands of the three urban regions.
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Fig. 3. The dynamics of the transfer flows from each urban region without
the MPC-based perimeter control.

state. Figure 4 shows that our MPC-based perimeter con-
trollers clear the regions’ vehicle accumulations to reduce
the total delay of the road traffic network, improving the
temporal-spatial balance of the multi-region traffic dynam-
ics and the macroscopic traffic efficiency.
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Fig. 4. The dynamics of the transfer flows from each urban region with
the MPC-based perimeter control.

Moreover, we compare our proposed joint optimization
and control method with the other baselines, the CCP and
the ACP methods as detailed in the main text, and the
advanced scheme, the VCO method, that uses the state-
of-the-art constrained optimization methodology.1 Figure 5
and Figure 6 demonstrate the EE performance of the LTE-
V2V networks in the three regions using two different mod-
ulation and coding schemes (MCS), QPSK and 16-QAM,
respectively. Our proposed method can provide the highest
EE performance for all the regions on average among the
methods. In particular, our method boosts the EE perfor-
mance of the LTE-V2V network in the region i = 3 after
about 6000 s, while the network performance degrades un-
der the VCO method. This is because the compared method
cannot coordinate the multi-region traffic flow dynamics
and cannot adapt communication optimization to the multi-
region traffic dynamics. In the LTE-V2V networks of the
regions, i = 1, 2, with low-level vehicle accumulations,
our method provides similar EE performance to the VCO.
However, for the region i = 3 with the heavy vehicle ac-
cumulation, the compared method makes the LTE resource
blocks insufficient to support vehicular communications,
increasing transmission collisions and packet loss. On the
contrary, our method improves the EE performance of the
LTE-V2V network in this dense region by more than 30%
under the QPSK and the 16-QAM schemes, compared to the
other methods. The result confirms the significant benefit
of joint vehicular communication optimization and macro-
scopic traffic control.

In Figure 7, we show the system-level accumulated EE
over the whole time horizon and observe that our method
outperforms the others. Specifically, our method provides
comparable EE performance to the VCO method under the

1. To the best of our knowledge, no existing methodologies can
directly address the scenario problem that couples the energy-efficiency
optimization of multi-region LTE-V2V networks and the multi-region
macroscopic traffic dynamics control. Thus, we treat an existing con-
strained optimization approach (i.e., the VCO), also based on the
Lagrangian multiplier theory, as a state-of-the-art method for perfor-
mance comparison. The VCO method is not driven by coordinated
macroscopic traffic dynamics. Therefore, it does not incorporate multi-
region perimeter control. The comparison with the VCO enables us to
highlight the significance of joint optimization and control.
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Fig. 5. The evolution of the multi-region EE metrics under comparative methods using the QPSK modulation scheme.
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Fig. 6. The evolution of the multi-region EE metrics under comparative methods using the 16-QAM modulation scheme.

16-QAM scheme and achieves 10.49% higher EE perfor-
mance than the compared method under the QPSK scheme.
Figure 8 illustrates the LTE resource utilization fairness
index among multiple regions. Our method can achieve
fairer resource utilization on average than the VCO method
as time evolves. Jain’s fairness index of the VCO method
is decreasing after 4000 s. By comparison, even though our
method experiences a performance drop between 2500 s
and 6000 s since the urban regions have high vehicle ac-
cumulations during this phase, it dramatically improves the
fairness performance after that. Our method provides al-
most 100% fairness under the QPSK scheme and more than
95% under the 16-QAM finally. Overall, the multi-region
LTE-V2V networks can better benefit from incorporating
macroscopic traffic control into vehicular communication
optimization. The above supplementary results validate our
proposed method, proving the conclusions consistent with
those in the main text.
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